Roll No.

| | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Total No. of Questions: 09

B.Tech. (2007-2010 Batches) (Sem.-1)
 ENGINEERING MATHEMATICS-I
 Subject Code : AM-101
 Paper ID: [A0111]

Time : 3 Hrs.

Max. Marks : 60

INSTRUCTION TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION - B \& C. have FOUR questions each.
3. Attempt any FIVE questions from SECTION B \& C carrying EIGHT marks each.
4. Select atleast TWO questions from SECTION - B \& C.

SECTION-A

1. Write briefly :
(i) Sketch the graph of $y=|x|+2 x$.
(ii) Find the area of the region enclosed by the parabola $y=2-x^{2}$ and the line y $=-x$.
(iii) If $u=\sin \left(\frac{x}{y}\right), x=e^{t}, y=t^{2}$, find $\frac{d u}{d t}$
(iv) Find the percentage error in the area, of an ellipse when an error of +1 percent is made in measuring the major and minor axes.
(v) Find the equation of the sphere whose center is $(2,-3,4)$ and radius 5 .
(vi) Find the equation of the quadratic cylinder whose generators intersect the curve $a x^{2}+b y^{2}=2 z, l x+m y+n z=p$ and are parallel to z-axis.
(vii) Evaluate $\int_{0}^{\frac{\pi}{2}}\left[\int_{0}^{a \cos \theta} r \sqrt{a^{2}-r^{2}} d r\right] d \theta$
(viii) Calculate $\iint_{R} f(x, y) d A$ for $f(x, y)=1-6 x^{2} y$ and $R: 0 \leq x \leq 2,-1 \leq y \leq 1$.
(ix) Discuss the convergence or divergence of the series $\sum \frac{\sec ^{-1} n}{n^{1.3}}$.
(x) If $\sin (A+i B)=x+i y$, prove that $\frac{x^{2}}{\cosh ^{2} B}+\frac{y^{2}}{\sinh ^{2} B}=1$.

SECTION - B

2. Graph the functions (a) $y=x^{\frac{5}{3}}-5 x^{\frac{2}{3}}$
(b) $y=\left|x^{2}-1\right|$.
3. The region bounded by the curve $y=x^{2}+1$ and the line $y=-x+3$ is revolved about the x-axis to generate a solid. Find the volume of the solid.
4. (i) If $z=x f\left(\frac{y}{x}\right)+g\left(\frac{y}{x}\right)$, show that $x^{2} \frac{\partial^{2} z}{\partial x^{2}}+2 x y \frac{\partial^{2} z}{\partial x \partial y}+y^{2} \frac{\partial^{2} z}{\partial y^{2}}=0$.
(ii) Verify Euler's theorem for the function, $u=\left(x^{\frac{1}{2}}+y^{\frac{1}{2}}\right)\left(x^{n}+y^{n}\right)$.
5. Find the minimum value of $x^{2}+y^{2}+z^{2}$, given that $a x+b y+c z=p$.

SECTION-C

6. Find the equation of the sphere which passes through the points $(1,-4,3)$, $(1,-5,2),(1,-3,0)$ and whose center lies on the plane, $x+y+z=0$.
7. Change the order of integration in the following integral and evaluate

$$
\int_{0}^{4 a} \int_{\frac{x^{2}}{4 a}}^{2 \sqrt{a x}} d y d x
$$

8. Find the radius and interval of convergence for the following power series

$$
\sum_{n=1}^{\infty} \frac{(4 x-5)^{2 n+1}}{n^{\frac{3}{2}}}
$$

For what values of x, does the series converges (a) absolutely, (b) conditionally
9. If $C=\cos ^{2} \theta-\frac{1}{3} \cos ^{3} \theta \cos 3 \theta+\frac{1}{5} \cos ^{5} \theta \cos 5 \theta-\ldots$, then prove that $\tan 2 C=2 \cot ^{2} \theta$.

